Resistors
-
Step Response of a Series RLC Circuit
where roots \(s_1\) and \(s_2\) are called natural frequencies, measured in nepers per second \((\textrm{Np}/\textrm{s})\); \(\omega_0\) is known as the resonant frequency or strictly as the undamped natural frequency, expressed in radians per second \((\textrm{rad}/\textrm{s})\); \(\alpha\) is the neper frequency or the damping factor, expressed in nepers per second \((\textrm{Np}/\textrm{s})\); \(R\) is the equivalent resistance; \(L\) is the equivalent inductance; and \(C\) is the equivalent capacitance.
-
Step Response of a Parallel RLC Circuit
where roots \(s_1\) and \(s_2\) are called natural frequencies, measured in nepers per second \((\textrm{Np}/\textrm{s})\); \(\omega_0\) is known as the resonant frequency or strictly as the undamped natural frequency, expressed in radians per second \((\textrm{rad}/\textrm{s})\); \(\alpha\) is the neper frequency or the damping factor, expressed in nepers per second \((\textrm{Np}/\textrm{s})\); \(R\) is the equivalent resistance; \(L\) is the equivalent inductance; and \(C\) is the equivalent capacitance.
-
Source-Free Series RLC Circuit
where roots \(s_1\) and \(s_2\) are called natural frequencies, measured in nepers per second \((\textrm{Np}/\textrm{s})\); \(\omega_0\) is known as the resonant frequency or strictly as the undamped natural frequency, expressed in radians per second \((\textrm{rad}/\textrm{s})\); \(\alpha\) is the neper frequency or the damping factor, expressed in nepers per second \((\textrm{Np}/\textrm{s})\); \(R\) is the equivalent resistance; \(L\) is the equivalent inductance; and \(C\) is the equivalent capacitance.
- Source-Free RL Circuit
- Source-Free RC Circuit
-
Source-Free Parallel RLC Circuit
where roots \(s_1\) and \(s_2\) are called natural frequencies, measured in nepers per second \((\textrm{Np}/\textrm{s})\); \(\omega_0\) is known as the resonant frequency or strictly as the undamped natural frequency, expressed in radians per second \((\textrm{rad}/\textrm{s})\); \(\alpha\) is the neper frequency or the damping factor, expressed in nepers per second \((\textrm{Np}/\textrm{s})\); \(R\) is the equivalent resistance; \(L\) is the equivalent inductance; and \(C\) is the equivalent capacitance.
-
Second-Order Circuits
Typical examples of second-order circuits are RLC circuits, in which the three kinds of passive elements (resistors, inductors, and capacitors) are present. Other examples are RL and RC circuits.
-
Phasor Relationships for Circuit Elements
Resistor \(R\)
-
Impedance and Admittance
Resistor \(R\)
- First-Order Circuits
-
Damping
In physical systems, damping is produced by processes that dissipate the energy stored in the oscillation. Examples include viscous drag in mechanical systems, resistance in electronic oscillators, and absorption and scattering of light in optical oscillators.
- Circuit Element Models in s-Domain